Solid State Physics Phys(471)
Lecture 9-11

LATTICE VIBRATIONS

$>$ Atoms in lattice are not stationary even at $T=0 \mathrm{~K}$. They vibrate about particular equilibrium positions (zero-point energy).
$>$ For $T>0 \mathrm{~K}$, vibration amplitude increases as atoms gain thermal energy.
$>$ At low frequencies $(f<1 \mathrm{THz})$, long wavelength $\lambda \sim 50 \mathrm{~A}^{\circ}$, one can treat solid as continuum, i.e. ignore discrete nature.

LATTICE VIBRATIONS

Continuum Model

Propagation of an elastic wave in a sample of long bar follows the dispersion relation:

$$
\omega=v_{s} q
$$

Where v_{s} is the wave velocity (sound velocity) which equal in this case to

$$
v_{s}=\sqrt{Y / \rho}
$$

$Y \& \rho$ are Young's modulus and density of the sample.
Note that the v is independent of λ for an elastic medium!
Discrete Lattice By contrast to a continuous solid, a real solid is not uniform on an atomic scale, and thus it will exhibit dispersion.
I.e. v now depends on λ.

As the λ decreases and q increases, the atoms begin to scatter the wave, and hence to decrease its velocity.
Thus, one expects the dispersion relation to be as shown

LATTICE VIBRATIONS

Monatomic Chain

Consider 1D chain of identical atoms each of mass M, where atoms joined to nearest neighbors by 'spring' of force constant α, and spacing a apart.

Longitudinal

For atom n,

$$
F_{n}=M \frac{\partial^{2} u_{n}}{\partial t^{2}}=\sum_{p} \alpha_{p}\left(u_{n+p}-u_{n}\right)
$$

Where p is atom label and α_{p} is force constant for atom p.

LATTICE VIBRATIONS

Look for wavelike solution: $u_{n}=A e^{i\left(q X_{n}-\omega t\right)}$

Where $X_{n}=n a$ is the equilibrium position .
Substitute into eq. of motion get:

$$
\omega^{2}=\frac{4 \alpha}{M} \sin ^{2} \frac{1}{2} q a
$$

Hence, the Dispersion relation, which Determines how wave vector q is related to ω, in $\mathbf{1 D}$ is :

$$
\omega=\omega_{m}\left|\sin \frac{1}{2} q a\right|
$$

Where $\omega_{m}=(4 \alpha / \mathrm{M})^{1 / 2}$.

LATTICE VIBRATIONS

Notes:

$>$ Range of q related to ist Brillouin zone. Values of q outside range have no physical meaning.
$>N$ does not appear in dispersion relation, i.e. equations of motion of all atoms lead to the same algebraic relation between ω and θ.

LATTICE VIBRATIONS

1- Long wavelength limit:
As $q \rightarrow 0, \sin \theta=\theta$, and then $\omega=\frac{\omega_{m} a}{2} q$

Or; $\quad v_{s}=\frac{\omega_{m} a}{2} \quad$| \square |
| :---: |
| Using $v_{s}=\sqrt{Y / \rho}$ |$\quad \alpha=Y a$

2- Short wavelength limit:

As q increases, the dispersion relation begins to deviate from the straight line.
It will saturate at $q=\pi /$ a with maximum frequency

$$
\omega_{m}=\sqrt{\frac{4 \alpha}{M}}
$$

LATTICE VIBRATIONS

In a 3-D atomic lattice we expect to observe 3 different branches of the dispersion relation, since there are two mutually perpendicular transverse wave patterns in addition to the one longitudinal pattern we have considered.

Along different directions in the reciprocal lattice the shape of the dispersion relation is different. But note the similarity to the simple 1-D result we found.

LATTICE VIBRATIONS

Diatomic Chain

Consider a linear diatomic chain of atoms (1D model for a crystal like NaCl) with masses M_{1}, M_{2} and a force constant α.

Applying Newton's second law gives a dispersion relation with two "branches":

$$
\text { What if } M_{1}=M_{2} \text { ? }
$$

$$
\omega^{2}=\alpha\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) \pm \alpha \sqrt{\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)^{2}-\frac{4 \sin ^{2}(q a)}{M_{1} M_{2}}}
$$

Acoustic modes

$\omega_{-}(\mathrm{q}) \quad \omega \rightarrow 0 \quad$ as $\quad \mathrm{q} \rightarrow 0 \quad\left(\mathrm{M}_{1}\right.$ and M_{2} move in phase $)$

One Longitudinal (LA) and two Transverse (TA) modes.

Optical modes

LATTICE VIBRATIONS

$$
\omega_{+}(\mathrm{q}) \quad \omega \rightarrow \omega_{\max } \text { as } \mathrm{q} \rightarrow 0 \quad\left(\mathrm{M}_{1} \text { and } \mathrm{M}_{2} \text { move out of phase }\right)
$$

One Longitudinal ($\mathbf{L O}$) and two Transverse (TO) modes.

LATTICE VIBRATIONS

ω is periodic in $q \&$ all values of ω contained in range:

$$
-\pi / 2 a<q<\pi / 2 a \text {. }
$$

$>$ Range of q related to half of 1 st Brillouin zone.
> The gap indicates the allowed frequencies (Band-pass Filter).

$\bigcirc>$ Generalize to crystals with s different atoms in unit cell; 3 acoustic branches \& $3(s-1)$ optical branches; ($\mathrm{s}-1$) LO and $2(\mathrm{~s}-1) \mathrm{TO}$.

LATTICE VIBRATIONS

Dispersion Relation in GaAs (3D)

LATTICE VIBRATIONS

The optical modes generally have frequencies near $\omega=10^{13} \mathrm{~s}^{-1}$, which is in the range of infrared radiation of the electromagnetic spectrum. Thus, when IR radiation is incident upon such a lattice it should be strongly absorbed in this band of frequencies.

At right is a transmission spectrum for IR radiation incident upon a very thin $\mathbf{N a C l}$ film. Note the sharp minimum in transmission (maximum in absorption) at a wavelength of about $61 \times 10^{-4} \mathrm{~cm}$, or $61 \times 10^{-6} \mathrm{~m}$. This corresponds to a frequency $(\omega)=4.9 \times 10^{12} \mathrm{~s}^{-1}$.

$$
\text { Since, } \omega \propto 1 / \sqrt{M}
$$

If instead we measured this spectrum for LiCl , we would expect the peak to shift to higher frequency (lower wavelength) because

$$
\mathbf{M}_{\mathrm{L}, \mathrm{i}}<\mathbf{M}_{\mathrm{Na}} .
$$

LATTICE VIBRATIONS

Phonons:

The energy of lattice vibration is quantized, and the quantum of this energy is called a phonon, in analogy to photons the quantum of the electromagnetic waves.

The energy of phonon is: $\varepsilon=\hbar \omega$
With a momentum equal to: $p=\hbar q$
The number of phonons is given by Bose-Einstein distribution:

$$
n=\frac{1}{e^{\hbar \omega / K T}-1}
$$

This number depends on temperature,

$$
\text { at } \quad T=0 \quad \Rightarrow \quad n=0
$$

$$
\text { at very high temperature, } \Rightarrow n=\frac{\boldsymbol{K} \boldsymbol{T}}{\hbar \omega}
$$

LATTICE VIBRATIONS

The phonon dispersion curves $\omega(\mathrm{K})$ are determined via inelastic scattering of neutrons with the emission or absorption of a phonon

Interaction of phonons with other excitation (or with themselves) governed by conservation laws.

$$
\begin{gathered}
E_{1}-E_{2}=\hbar \omega \\
\vec{k}_{1}-\vec{k}_{2}=\vec{q}
\end{gathered}
$$

Fact:

The number of phonons in a system is not conserved.

LATTICE VIBRATIONS

Density of States

1D density of States

In order to calculate physical properties of solids, the no. of modes in a given frequency (or energy, or q-space) range is required.

A 'better' way of obtaining this is to apply the periodic boundary condition:

$$
\begin{gathered}
u(x=L)=u(x=0) \\
e^{i q L}=1
\end{gathered}
$$

$$
q L=n 2 \pi, \quad \text { ie. } \quad q=n 2 \pi / L
$$

$$
q=-6 \pi / L \quad-4 \pi / L \quad-2 \pi / L \quad 0 \quad 2 \pi / L \quad 4 \pi / L \quad 6 \pi / L
$$

Thus, 'length' occupied by one mode in q-space is $\mathbf{2} \pi / \boldsymbol{L}$. Hence the No. of modes in the range $\boldsymbol{d q}$

$$
d q / \frac{2 \pi}{L}
$$

Since there is the same No. of states in $g(q) \mathrm{d} q \& g(\omega) \mathrm{d} \omega$, then

$$
g(\omega) d(\omega)=g(q) d(q)=\frac{L}{2 \pi} d q \quad \square \quad g(\omega)=\frac{L}{2 \pi} \frac{d q}{d \omega}
$$

LATTICE VIBRATIONS

Since the modes lying in(-ve) q-region must be included as well, then:

$$
g(\omega)=\frac{L}{\pi} \frac{d q}{d \omega} \quad g(\omega)=\frac{L}{\pi} \frac{1}{v_{g}}
$$

Note the relation between the density of states and the group velocity.

At long wavelength limit:

$$
\omega=v_{\mathrm{s}} q, \quad \text { ie. } d \omega / d q=v_{\mathrm{s}}
$$

$$
g(\omega)=\frac{L}{\pi} \frac{1}{v_{s}}
$$

At Dispersive region:

$$
\omega=\omega_{m}\left|\sin \frac{1}{2} q a\right|
$$

and hence,

$$
g(\omega)=\frac{2 L}{\pi a \omega_{m}}[\cos (q a / 2)]^{-1}
$$

LATTICE VIBRATIONS

3D density of States

Volume occupied by one mode in q-space is:

$$
(2 \pi / L)^{3}=\left(8 \pi^{3}\right) / V
$$

Thus, No. of modes contained in a small spherical shell in q-space is:

$$
4 \pi q^{2} \mathrm{~d} q / 8 \pi^{3} / V
$$

Hence, density of states in w-space is

$$
g(\omega)=\frac{V}{8 \pi^{3}} 4 \pi q^{2} \frac{d q}{d \omega}
$$

$$
g(\omega)=\frac{V}{2 \pi^{2}} q^{2} \frac{d q}{d \omega}
$$

This is the density of state if we assume that each value of q associated with one single mode. But, in fact for each q there are 3 modes (1 longitudinal \& 2 transverse), then

$$
g(\omega)=\frac{3 V}{2 \pi^{2}} q^{2} \frac{d q}{d \omega}
$$

