

Solid State Physics Phys(471)

Lecture 9-11

ightharpoonup Atoms in lattice are not stationary even at T = 0K. They vibrate about particular equilibrium positions (zero-point energy).

For T > 0K, vibration amplitude increases as atoms gain thermal energy.

ightharpoonup At low frequencies (f < 1 THz), long wavelength $\lambda \sim 50 A^{\circ}$, one can treat solid as continuum, i.e. ignore discrete nature.

Continuum Model

Propagation of an *elastic wave* in a sample of long bar follows the

dispersion relation :

$$\omega = v_s q$$

Where v_s is the wave velocity (sound velocity) which equal in this case to

$$v_s = \sqrt{Y/\rho}$$

 $Y \& \rho$ are Young's modulus and density of the sample.

Note that the v is independent of λ for an elastic medium!

Discrete Lattice

By contrast to a continuous solid, a real solid is not uniform on an atomic scale, and thus it will exhibit dispersion.

I.e. v now depends on λ .

As the λ decreases and q increases, the atoms begin to scatter the wave, and hence to decrease its velocity.

Thus, one expects the dispersion relation to be as shown

Monatomic Chain

Consider **1D** chain of identical atoms each of mass M, where atoms joined to nearest neighbors by 'spring' of force constant α , and spacing α apart.

At equilibrium:

n-1

n+p

Longitudinal wave:

For atom
$$n$$
,
$$F_n = M \frac{\partial^2 u_n}{\partial t^2} = \sum_p \alpha_p (u_{n+p} - u_n)$$

 \mathcal{U}_{n-1}

Where p is atom label and α_p is force constant for atom p.

 u_{n+1}

 u_{n+p}

Look for wavelike solution: $u_n = Ae^{i(qX_n - \omega t)}$

Where $X_n = na$ is the equilibrium position.

Substitute into eq. of motion get:

$$\omega^2 = \frac{4\alpha}{M} \sin^2 \frac{1}{2} qa$$

Hence, the **Dispersion relation**, which Determines how wave vector q is related to ω , in **1D** is :

$$\omega = \omega_m \left| \sin \frac{1}{2} qa \right|$$

Where $\omega_m = (4\alpha/M)^{1/2}$.

 $ightharpoonup \omega$ is periodic in q & all values of ω contained in range:- $\pi/a < q < \pi/a$.

 \triangleright Range of q related to **1st Brillouin zone**. Values of q outside range have no physical meaning.

 \triangleright *N* does not appear in dispersion relation, **i.e.** equations of motion of all atoms lead to the same algebraic relation between ω and θ .

1- Long wavelength limit:

As $q \rightarrow 0$, $\sin \theta = \theta$, and then

$$\omega = \frac{\omega_m a}{2} q$$

Or;

$$v_s = \frac{\omega_m a}{2}$$

Using
$$v_s = \sqrt{Y/\rho}$$

$$\alpha = Ya$$

2- Short wavelength limit:

As *q* increases, the dispersion relation begins to deviate from the straight line.

It will saturate at $q=\pi/a$ with maximum frequency

$$\omega_m = \sqrt{\frac{4\alpha}{M}}$$

Along different directions in the reciprocal lattice the shape of the dispersion relation is different. But note the similarity to the simple 1-D

In a **3-D** atomic lattice we expect to observe **3** different **branches** of the **dispersion relation**, since there are **two** mutually perpendicular **transverse** wave patterns in addition to **the one longitudinal** pattern we have considered.

Diatomic Chain

Consider a linear diatomic chain of atoms (1D model for a crystal like NaCl) with masses M_1 , M_2 and a force constant α .

At equilibri<mark>um:</mark>

Applying Newton's second law gives a dispersion relation with two "branches":

What if
$$M_1 = M_2$$
?

$$\omega^{2} = \alpha \left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right) \pm \alpha \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{2} - \frac{4\sin^{2}(qa)}{M_{1}M_{2}}}$$

Acoustic modes

$$\omega \rightarrow 0$$

as
$$q \rightarrow 0$$

 $\omega_{-}(q)$ as $q \to 0$ (M₁ and M₂ move in phase)

One Longitudinal (LA) and two Transverse (TA) modes.

Optical modes

$$\omega_{+}(q)$$

$$\omega \rightarrow \omega_{\text{max}}$$
 as q

 $\omega_{+}(q)$ $\omega \rightarrow \omega_{max}$ as $q \rightarrow 0$ (M₁ and M₂ move **out of phase**)

One Longitudinal (LO) and two Transverse (TO) modes.

ω is periodic in q & all values of ω contained in range: $-\pi/2a < q < \pi/2a$.

Range of q related to half of 1st Brillouin zone.

➤ The gap indicates the allowed frequencies (**Band-pass Filter**).

➤ Generalize to crystals with s different atoms in unit cell; 3 acoustic branches & 3(s-1) optical branches; (s-1) LO and 2(s-1) TO.

Second band First band

Dispersion Relation in GaAs (3D)

The optical modes generally have frequencies near $\omega = 10^{13}$ s⁻¹, which is in the range of **infrared radiation** of the electromagnetic spectrum. Thus, when **IR** radiation is incident upon such a lattice it should be strongly absorbed in this band of frequencies.

At right is a transmission spectrum for **IR** radiation incident upon a very thin **NaCl** film. Note the sharp minimum in transmission (maximum in absorption) at a wavelength of about 61×10^{-4} cm, or 61×10^{-6} m. This corresponds to a frequency $\omega = 4.9 \times 10^{12}$ s⁻¹.

If instead we measured this spectrum for **LiCl**, we would expect the peak to shift to higher frequency (lower wavelength) because

$$M_{Li} < M_{Na}$$

Phonons:

The **energy of lattice vibration** is quantized, and *the quantum of this energy* is called a **phonon**, in analogy to photons the quantum of the electromagnetic waves.

With a **momentum** equal to:
$$p = \hbar q$$

The **number of phonons** is given by **Bose-Einstein** distribution:

$$n = \frac{1}{e^{\hbar \omega / KT} - 1}$$

This number depends on temperature,

at
$$T=0$$
 \Rightarrow $n=0$

at very high temperature,
$$\Rightarrow$$
 $n = \frac{KT}{\hbar \omega}$

The phonon dispersion curves $\omega(K)$ are determined via inelastic scattering of neutrons with the emission or absorption of a phonon

Interaction of phonons with other excitation (or with themselves) governed by conservation laws.

$$E_1 - E_2 = \hbar \omega$$

$$\vec{k}_1 - \vec{k}_2 = \vec{q}$$

Fact:

The number of phonons in a system is not conserved.

Density of States

In order to calculate physical properties of solids, the **no. of modes in a given frequency** (or energy, or *q*-space) **range** is required.

1D density of States

A 'better' way of obtaining this is to apply the *periodic boundary* condition:

$$u(x=L) = u(x=0)$$

$$e^{iqL} = 1$$

$$qL = n2\pi$$
, ie. $q = n2\pi/L$

$$q = -6\pi/L - 4\pi/L - 2\pi/L = 0 = 2\pi/L = 4\pi/L = 6\pi/L$$

Since there is **the same No. of states** in $g(q)dq \& g(\omega)d\omega$, then

$$g(\omega)d(\omega) = g(q)d(q) = \frac{L}{2\pi}dq$$
 $g(\omega) = \frac{L}{2\pi}\frac{dq}{d\omega}$

Since the modes lying in (-ve) q-region must be included as well, then:

$$g(\omega) = \frac{L}{\pi} \frac{dq}{d\omega} \qquad \Longrightarrow \qquad g(\omega) = \frac{L}{\pi} \frac{1}{v_g}$$

$$g(\omega) = \frac{L}{\pi} \frac{1}{v_g}$$

Note the relation between the density of states and the group velocity.

At long wavelength limit:

and hence,

$$\omega = v_s q$$
, ie. $d\omega/dq = v_s$

$$g(\omega) = \frac{L}{\pi} \frac{1}{v_s}$$

At Dispersive region:

and hence,

$$\omega = \omega_m \left| \sin \frac{1}{2} qa \right|$$

$$g(\omega) = \frac{2L}{\pi \, a\omega_m} \left[\cos(qa/2)\right]^{-1}$$

3D density of States

Volume occupied by one mode in *q*-space is:

$$(2\pi/L)^3 = (8\pi^3)/V$$

Thus, No. of modes contained in a small spherical shell in *q*-space is:

$$4\pi q^2 dq / 8\pi^3/V$$

Hence, density of states in w-space is $g(\omega) = \frac{V}{8\pi^3} 4\pi q^2 \frac{dq}{d\omega}$

$$g(\omega) = \frac{V}{8\pi^3} 4\pi q^2 \frac{dq}{d\omega}$$

$$g(\omega) = \frac{V}{2\pi^2} q^2 \frac{dq}{d\omega}$$

This is the density of state if we assume that each value of q associated with one single mode. But, in fact for each q there are 3 modes (1 longitudinal & 2 transverse), then

$$g(\omega) = \frac{3V}{2\pi^2} q^2 \frac{dq}{d\omega}$$